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ROBUST HYPOTHESTS TESTING WITH BAND MODFLS
FOR THE PROBABILITY DENSITIES

Saleem A. Kassam, Member, IEEE

Abstract

Huber's robust probability ratio tests for classes of density functions
described by contamination and bounded total-variation models are extended
for band-models for the densities. A connection between the least
favorable (risk) pair of densities and distance-measure based robustness
is made explicit.

1. INTRODUCTION
In [1], Huber developed the ideas of robust tests for binary hypothesis
testing problems. Robust tests were obtained as saddle point solutions with
respect to performance criteria based on the risk. Huber was mainly interested
in classes of probability measures (under the two hypotheses) which contain

contaminated nominal probability measures. In [1], classes of probability

measures with precribed maximum total-variation from nominal measures were

also considered.

Here we will show that we can extend Huber's analyses for the contaminated
nominals classes to classes of density functions in given bands of density
functions lying within known upper and lower bounds for each hypothesis. We
will also point out an interesting distance-measure robustness property of
the least-favorable pairs of probability density functions. This
property connects the hypothesis-testing results to recent results on robust
Wiener filtering by Kassam and Lim [2] and Poor (3], this recent work having
been motivated to a large extent by the usefulness of the theory of robust tests

for hypotheses.
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It should be noted that in [4,5] Kuznetsov has also considered hypothesis
testing with similar band-models for the density functions. The band-model may

be more useful in some applications, and does not directly involve the notion

of a nominal density.

2. PROBLEM DEFINITION
Let (2,A) be a measurable space and let f be the density function, with
respect to an arbitrary measure p on the space, of a probability measure P. We b

consider the following classes FO'FI of allowable density functions under the

hypotheses “0' Hl respectively:

Py {f|f0L EXa, Sfay = 1}

- S¢< -
Fy {flt'u £ 5% Sedu = 1}

Here tOL' fOU. fll.' flU are non-negative bounding functions which are such that FO

oL’ "1
upper bounds are possibly extended-real-valued, and f £oy M f £, 1

and F| do not overlap, with £ , f bounded andffOL au, ffu du < 1. The
Let ¢ be a test for Fo vs. F1 rejecting Fi with probability ¢i(§_) when
X € Qn is observed, and let Li be the loss incurred in falsely rejecting Hi'
i = 0,1. The risk function R(fi' ¢) = Li Ef (@i}. i = 0,1, is the criterion
i

of interest in various testing problems [1], and we are thus interested in

obtaining a least-favorable pair of densities (go' 91) in Fo x Fl' so that

i T e

R(fl' ;) < R(qi. ¢), i = 0, 1, for any probability rat.o test ¢ for 9y VS- 9.

Note that the above f, denotes an arbitrary element of F i
In the following section we obtain the least-favorable pair (go. 91) using

Huber's techniques, and show that the result reduces to Huber's when

fou fyy are unbounded everywhere.
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3. THE LEAST-FAVORABLE DENSITIES

The introduction of upper bounds fou. £ in the classes of allowable

Ui}
densities results in a modification in Huber's solution in that the robust test

is not always "censored" at constant values. The specific result is the follow-
ing theorem.

Theorem: The least-favorable pair of densities (go, 91) exists, and is defined

by one of either (a), (b), (c) or (d) below, where ko. kl. K, Lo and Ll are

constants:
< <
(@ kofor * fir < *ofor © fiu
<
L tw . flu - koton
fir ¢ fin > %fo
1 1
- € = <
ke 0 for i fin < fou
1 1
1
<
9% * fouw ¢ fou Elfn.

oL

where 0 < k_ < k, < ™,
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>k
where k = 1L

< <
1L = 7oL 1u

<1
L fou 1L

i ﬁw

L T 3

oL Q)

l- fl
1

T

£_ > kf

(=]

4
1L ou 1y —  OL

ou

-

oL

<
2. 5t
£ > kf

and h is some non-negative function.

(c)

Lo‘ou 4
N . v
fw

1
Lfw
qO il fOL ¥
foo ¢

2% 4 £

>
£10 > Lofou 2 f1p

11 > Lofou

f1u < Lofoy
e >de 59
ou =T 1w oL
1
fo:, 2 Zlfm

1
for < 7,710

where « > Lo 2k > ll >0, k as in (1), with equality not possible in both places.

S

A T, TR TN T AR

!
<




(@ In (c), if 9, is not valid with Lo + ®, then

ou
g -
1
\ tw . fou .

3 In (c), if 9 is not valid with Ll + 0, then

‘ arbitrary , £ =0

s arbitrary , flu =0 k
(]
>
fou & ‘10 "

Proof: The proof of existence of a solution according to either (a), (b), (c)
(d) is outlined in the Appendix. To prove robustness of the probability ratio
test for the (80’81) pair, we have to show that Huber's Lemma 2 (1] holds in our
case. We illustrate this for case (a).

As in [1], we have to show that

g 8 g
P, {_s!‘<t}>l’ leey2p {(Lecerzp, (e}
0 8 g 8 8 g 1 &

for any real t. Suppose ko <t g kl. Then
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Similar considerations establish the condition for tsko and :‘k‘. Robustness of
the probability ratio test between 8 and 8, then follows directly from this result [1)
Figure 1 illustrates the form of the least favorable pair (go.gl) for a simple
example where (a) in Theorem 1 is assumed to be valid. Note that we get Huber's

result for the c-contamination classes when the upper bounds tend to infinity.

4. DISTANCE-MEASURES AND ROBUSTNESS
It is reasonable to expect that the pair of least favorable densities we
have obtained is the pair of densities "closest" together in some sense. This
is indeed the case, and by employing the general formulation of a distance-
measure between two hypotheses given by Ali and Silvey (6) we can show that the

least favorable densities are the closest pair in Fo x Fl' For probability density
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functions, a result by Blackwell [7?]) may be used to show this. This result was
used by Poor [3] to obtain a connection between robust Wiener filters and robust
tests for hypotheses. We now show more directly that the least favorable pairs

minimize the Ali-Silvey distance measure over Fo x Fl.

The Ali-Silvey distance between foeFo and fleFl can be written as

d(fg.f)) = EglClL ]} :

where I.f = fllfo and C 1s a convex function. Note that the expectation is a E
generalized expectation [6] allowing the measure corresponding to f1 to have a g
singular component relative to that for fo.

We consider case (a) in Theorem 1 to illustrate the proof of the statement.

We have

altgut)-degre) = [Egeity - [agern)

Ww

£oC" (L] (LgL) + I(fo—so)clle

- Ifo{ctnfl-c[Lgl}-+[<fo-ao)ctnsl

e T ——

(fg-gp) (CIL ] - LC'ILD) + J(fl-sl)c'[Lgl

Now I(fo-go)(C[Ls]-LSC'[Ls]) is non-negative because (C[le-LgC'[le) is I

e s Manei

non-increasing with Lg and because of the definition of g9 in different sets

according to (a), Theorem 1. Specifically, i

I(fo-go)(c[le-LSC'[Ls]) 2 I(fo-so)(CIkll-klc'Ikll)
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we have fo-goso.

because whenever L.<k1 we have fo-gozo and whenever Lg>kl

Similarly, I(fl-gl)C'(L.)zO. and we have the result.

Exactly the same conclusion is valid for the least favorable spectral densities

for robust Wiener filtering [2,3]. Recently, Poor [8]) has obtained similar re-

sults for a related set of problems.

5. CONCLUSION
It has been shown that Huber's robust testing results can be extended to
classes of probability density functions described by band-models, whkich do not
require an explicit notion of a nominal density function. The results reduce
to Huber's result on contaminated-nominal density classes when the upper bound
becomes large. We have also shown a direct connection between these results
and results on robust Wiener filters through a consideration of distance-

measures over the classes of allowable characteristics.
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APPENDIX
PROOF_OF EXISTENCE OF
SOLUTION IN THEOREM

Let Po(ko) - Igl and Pl(kl) :};0' with 8y 8By defined by (a) in Theorem 1.
The Po and Fl are continuous functions, Po non-decreasing and P1 non-increasing.

We have lim Po(k)<1; let lim Po(k) = a, Also, lim Pl(k)<l and let lim Pl(k) -a.
k=0 ko | S k0

1f .l>l and a°>1. the solutions ko.kl alwvays exist. If k°>k1 or if one or both

equations ’l(k) -1, Po(k) = 1 do not have a solution, we check existence of (b).
Now we consider the solution of Po(k) +4= Pl(k) + A/k = 1. The first equation

requires Po(k) - Pl(k) = A(1-k)/k. This equation has an infinite number of pairs

of solutions (A,k), and one of these will also be a solution to Po(k) =1 -A., We

then check if a solution for (31.30) for these values A,k can be obtained, as in (b).

Note that A, A/k have to be less than unity for a solution to be possible. We

would get % = Jh.

If (b) fails to give a solution, we consider QO(CO) - ng and Ql(ll) - Jgo in
(c). These are continuous and non-decreasing and non-increasing, respectively. If
solutions lo and Cl for Qo(lo) = 1 and Ql(tl) = 1 exist, than necessarily we
cannot have Co -k = Cl where k was the value considered above [Eq. (1)]. If (¢)

does not work, a solution of the form of (d) will always exist.




Figure Legend

Figure 1. Illustration of a least-favorable pair (go.gl)
given by part (a) of Theorem
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Figure 1.




